gasilafrican.blogg.se

Unit disk graph
Unit disk graph




Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables. Cambridge University Press, Cambridge (2007) Narasimhan, G., Smid, M.H.M.: Geometric Spanner Networks. (eds.) Handbook of Discrete and Computational Geometry, 3rd edn. Mitchell, J.S.B., Mulzer, W.: Proximity algorithms. In: Proceedings of the 22nd ACM Symposium on Principles of Distributed Computing (PODC), pp. Kuhn, F., Wattenhofer, R., Zhang, Y., Zollinger, A.: Geometric ad-hoc routing: of theory and practice. In: Proceedings of the 6th Annual International Conference on Mobile Computing and Networking (MOBICOM), pp. Karp, B., Kung, H.T.: GPSR: greedy perimeter stateless routing for wireless networks. Gupta, A., Kumar, A., Rastogi, R.: Traveling with a Pez dispenser (or, routing issues in MPLS). Giordano, S., Stojmenovic, I.: Position based routing algorithms for ad hoc networks: a taxonomy. Gao, J., Zhang, L.: Well-separated pair decomposition for the unit-disk graph metric and its applications. In: Proceedings of the 28th International Colloquium on Automata, Languages and Programming (ICALP), pp. Springer, Berlin (2008)įraigniaud, P., Gavoille, C.: Routing in trees. MIT Press, Cambridge (2009)ĭe Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry Algorithms and Applications, 3rd edn. In: Proceedings of the 32nd ACM Symposium on Principles of Distributed Computing (PODC), pp. ACM 42(1), 67–90 (1995)Ĭhechik, S.: Compact routing schemes with improved stretch. 7(6), 609–616 (2001)Ĭallahan, P., Kosaraju, S.: A decomposition of multidimensional point sets with applications to \(k\)-nearest-neighbors and \(n\)-body potential fields. The header size is \(O(\log n \log D)\) bits.īose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery in ad hoc wireless networks.






Unit disk graph